Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Parishin from Gastrodia elata Extends the Lifespan of Yeast via Regulation of Sir2/Uth1/TOR Signaling Pathway.

Identifieur interne : 000A49 ( Main/Exploration ); précédent : 000A48; suivant : 000A50

Parishin from Gastrodia elata Extends the Lifespan of Yeast via Regulation of Sir2/Uth1/TOR Signaling Pathway.

Auteurs : Yanfei Lin [République populaire de Chine] ; Yujuan Sun [République populaire de Chine] ; Yufang Weng [République populaire de Chine] ; Akira Matsuura [Japon] ; Lan Xiang [République populaire de Chine] ; Jianhua Qi [République populaire de Chine]

Source :

RBID : pubmed:27429709

Descripteurs français

English descriptors

Abstract

Parishin is a phenolic glucoside isolated from Gastrodia elata, which is an important traditional Chinese medicine; this glucoside significantly extended the replicative lifespan of K6001 yeast at 3, 10, and 30 μM. To clarify its mechanism of action, assessment of oxidative stress resistance, superoxide dismutase (SOD) activity, malondialdehyde (MDA), and reactive oxygen species (ROS) assays, replicative lifespans of sod1, sod2, uth1, and skn7 yeast mutants, and real-time quantitative PCR (RT-PCR) analysis were conducted. The significant increase of cell survival rate in oxidative stress condition was observed in parishin-treated groups. Silent information regulator 2 (Sir2) gene expression and SOD activity were significantly increased after treating parishin in normal condition. Meanwhile, the levels of ROS and MDA in yeast were significantly decreased. The replicative lifespans of sod1, sod2, uth1, and skn7 mutants of K6001 yeast were not affected by parishin. We also found that parishin could decrease the gene expression of TORC1, ribosomal protein S26A (RPS26A), and ribosomal protein L9A (RPL9A) in the target of rapamycin (TOR) signaling pathway. Gene expression levels of RPS26A and RPL9A in uth1, as well as in uth1, sir2 double mutants, were significantly lower than those of the control group. Besides, TORC1 gene expression in uth1 mutant of K6001 yeast was inhibited significantly. These results suggested that parishin exhibited antiaging effects via regulation of Sir2/Uth1/TOR signaling pathway.

DOI: 10.1155/2016/4074690
PubMed: 27429709
PubMed Central: PMC4939362


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Parishin from Gastrodia elata Extends the Lifespan of Yeast via Regulation of Sir2/Uth1/TOR Signaling Pathway.</title>
<author>
<name sortKey="Lin, Yanfei" sort="Lin, Yanfei" uniqKey="Lin Y" first="Yanfei" last="Lin">Yanfei Lin</name>
<affiliation wicri:level="4">
<nlm:affiliation>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sun, Yujuan" sort="Sun, Yujuan" uniqKey="Sun Y" first="Yujuan" last="Sun">Yujuan Sun</name>
<affiliation wicri:level="4">
<nlm:affiliation>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Weng, Yufang" sort="Weng, Yufang" uniqKey="Weng Y" first="Yufang" last="Weng">Yufang Weng</name>
<affiliation wicri:level="4">
<nlm:affiliation>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Matsuura, Akira" sort="Matsuura, Akira" uniqKey="Matsuura A" first="Akira" last="Matsuura">Akira Matsuura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522</wicri:regionArea>
<wicri:noRegion>Chiba 263-8522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xiang, Lan" sort="Xiang, Lan" uniqKey="Xiang L" first="Lan" last="Xiang">Lan Xiang</name>
<affiliation wicri:level="4">
<nlm:affiliation>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Qi, Jianhua" sort="Qi, Jianhua" uniqKey="Qi J" first="Jianhua" last="Qi">Jianhua Qi</name>
<affiliation wicri:level="4">
<nlm:affiliation>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27429709</idno>
<idno type="pmid">27429709</idno>
<idno type="doi">10.1155/2016/4074690</idno>
<idno type="pmc">PMC4939362</idno>
<idno type="wicri:Area/Main/Corpus">000A14</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A14</idno>
<idno type="wicri:Area/Main/Curation">000A14</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A14</idno>
<idno type="wicri:Area/Main/Exploration">000A14</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Parishin from Gastrodia elata Extends the Lifespan of Yeast via Regulation of Sir2/Uth1/TOR Signaling Pathway.</title>
<author>
<name sortKey="Lin, Yanfei" sort="Lin, Yanfei" uniqKey="Lin Y" first="Yanfei" last="Lin">Yanfei Lin</name>
<affiliation wicri:level="4">
<nlm:affiliation>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sun, Yujuan" sort="Sun, Yujuan" uniqKey="Sun Y" first="Yujuan" last="Sun">Yujuan Sun</name>
<affiliation wicri:level="4">
<nlm:affiliation>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Weng, Yufang" sort="Weng, Yufang" uniqKey="Weng Y" first="Yufang" last="Weng">Yufang Weng</name>
<affiliation wicri:level="4">
<nlm:affiliation>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Matsuura, Akira" sort="Matsuura, Akira" uniqKey="Matsuura A" first="Akira" last="Matsuura">Akira Matsuura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522</wicri:regionArea>
<wicri:noRegion>Chiba 263-8522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xiang, Lan" sort="Xiang, Lan" uniqKey="Xiang L" first="Lan" last="Xiang">Lan Xiang</name>
<affiliation wicri:level="4">
<nlm:affiliation>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
<author>
<name sortKey="Qi, Jianhua" sort="Qi, Jianhua" uniqKey="Qi J" first="Jianhua" last="Qi">Jianhua Qi</name>
<affiliation wicri:level="4">
<nlm:affiliation>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
<orgName type="university">Université de Zhejiang</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oxidative medicine and cellular longevity</title>
<idno type="eISSN">1942-0994</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gastrodia (chemistry)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Glucosides (chemistry)</term>
<term>Glucosides (pharmacology)</term>
<term>Malondialdehyde (metabolism)</term>
<term>Microbial Viability (drug effects)</term>
<term>Mutation (genetics)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>Superoxide Dismutase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Gastrodia (composition chimique)</term>
<term>Glucosides (composition chimique)</term>
<term>Glucosides (pharmacologie)</term>
<term>Malonaldéhyde (métabolisme)</term>
<term>Mutation (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
<term>Superoxide dismutase (métabolisme)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
<term>Viabilité microbienne (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glucosides</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Gastrodia</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Gastrodia</term>
<term>Glucosides</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Microbial Viability</term>
<term>Oxidative Stress</term>
<term>Saccharomyces cerevisiae</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Saccharomyces cerevisiae</term>
<term>Stress oxydatif</term>
<term>Transduction du signal</term>
<term>Viabilité microbienne</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutation</term>
<term>Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mutation</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Malondialdehyde</term>
<term>Reactive Oxygen Species</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espèces réactives de l'oxygène</term>
<term>Malonaldéhyde</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Superoxide dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Glucosides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Glucosides</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Parishin is a phenolic glucoside isolated from Gastrodia elata, which is an important traditional Chinese medicine; this glucoside significantly extended the replicative lifespan of K6001 yeast at 3, 10, and 30 μM. To clarify its mechanism of action, assessment of oxidative stress resistance, superoxide dismutase (SOD) activity, malondialdehyde (MDA), and reactive oxygen species (ROS) assays, replicative lifespans of sod1, sod2, uth1, and skn7 yeast mutants, and real-time quantitative PCR (RT-PCR) analysis were conducted. The significant increase of cell survival rate in oxidative stress condition was observed in parishin-treated groups. Silent information regulator 2 (Sir2) gene expression and SOD activity were significantly increased after treating parishin in normal condition. Meanwhile, the levels of ROS and MDA in yeast were significantly decreased. The replicative lifespans of sod1, sod2, uth1, and skn7 mutants of K6001 yeast were not affected by parishin. We also found that parishin could decrease the gene expression of TORC1, ribosomal protein S26A (RPS26A), and ribosomal protein L9A (RPL9A) in the target of rapamycin (TOR) signaling pathway. Gene expression levels of RPS26A and RPL9A in uth1, as well as in uth1, sir2 double mutants, were significantly lower than those of the control group. Besides, TORC1 gene expression in uth1 mutant of K6001 yeast was inhibited significantly. These results suggested that parishin exhibited antiaging effects via regulation of Sir2/Uth1/TOR signaling pathway. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27429709</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>03</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1942-0994</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2016</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Oxidative medicine and cellular longevity</Title>
<ISOAbbreviation>Oxid Med Cell Longev</ISOAbbreviation>
</Journal>
<ArticleTitle>Parishin from Gastrodia elata Extends the Lifespan of Yeast via Regulation of Sir2/Uth1/TOR Signaling Pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>4074690</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1155/2016/4074690</ELocationID>
<Abstract>
<AbstractText>Parishin is a phenolic glucoside isolated from Gastrodia elata, which is an important traditional Chinese medicine; this glucoside significantly extended the replicative lifespan of K6001 yeast at 3, 10, and 30 μM. To clarify its mechanism of action, assessment of oxidative stress resistance, superoxide dismutase (SOD) activity, malondialdehyde (MDA), and reactive oxygen species (ROS) assays, replicative lifespans of sod1, sod2, uth1, and skn7 yeast mutants, and real-time quantitative PCR (RT-PCR) analysis were conducted. The significant increase of cell survival rate in oxidative stress condition was observed in parishin-treated groups. Silent information regulator 2 (Sir2) gene expression and SOD activity were significantly increased after treating parishin in normal condition. Meanwhile, the levels of ROS and MDA in yeast were significantly decreased. The replicative lifespans of sod1, sod2, uth1, and skn7 mutants of K6001 yeast were not affected by parishin. We also found that parishin could decrease the gene expression of TORC1, ribosomal protein S26A (RPS26A), and ribosomal protein L9A (RPL9A) in the target of rapamycin (TOR) signaling pathway. Gene expression levels of RPS26A and RPL9A in uth1, as well as in uth1, sir2 double mutants, were significantly lower than those of the control group. Besides, TORC1 gene expression in uth1 mutant of K6001 yeast was inhibited significantly. These results suggested that parishin exhibited antiaging effects via regulation of Sir2/Uth1/TOR signaling pathway. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Yanfei</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Yujuan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weng</LastName>
<ForeName>Yufang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matsuura</LastName>
<ForeName>Akira</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-2300-7227</Identifier>
<AffiliationInfo>
<Affiliation>Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiang</LastName>
<ForeName>Lan</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qi</LastName>
<ForeName>Jianhua</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>06</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Oxid Med Cell Longev</MedlineTA>
<NlmUniqueID>101479826</NlmUniqueID>
<ISSNLinking>1942-0994</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005960">Glucosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4Y8F71G49Q</RegistryNumber>
<NameOfSubstance UI="D008315">Malondialdehyde</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D031668" MajorTopicYN="N">Gastrodia</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005960" MajorTopicYN="N">Glucosides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008315" MajorTopicYN="N">Malondialdehyde</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050296" MajorTopicYN="N">Microbial Viability</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>05</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27429709</ArticleId>
<ArticleId IdType="doi">10.1155/2016/4074690</ArticleId>
<ArticleId IdType="pmc">PMC4939362</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Ethnopharmacol. 2007 Apr 4;110(3):476-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17129693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2013 Sep 12;7(9):e2428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24069483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Sep 11;425(6954):191-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12939617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Pharm Res. 1999 Apr;22(2):219-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10230516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10042-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Aug 5;430(7000):686-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2016 Mar 23;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27015709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Aug 23;25(16):3832-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16888624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2009 Dec 30;8:70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20042083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Jan;47(2):495-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1992 Mar;111(3):419-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1587807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2011;75(4):800-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21512225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Mar 8;84(5):699-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8625408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Mar 8;410(6825):227-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11242085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2004 Nov;5(2):169-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(1):e1003245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Med. 2006;57:513-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16409164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 1999 Mar 8;424(1-2):83-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10064852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2014 May 15;731:50-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24642360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2014 Feb;14(1):148-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24119093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2004 Nov;5(2):133-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 Feb 25;14(3):4461-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23439553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Feb 7;451(7179):716-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18204438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jan 17;152(1-2):224-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23332757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2010 Feb;18(3):999-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20093034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1998 Oct;34(4):259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9799359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunopharmacol. 2010 Feb;10(2):147-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19874915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2011;75(5):854-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21597195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1992 Nov 3;44(9):1787-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1333207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1996;21(5):651-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8891668</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
<li>République populaire de Chine</li>
</country>
<region>
<li>Zhejiang</li>
</region>
<settlement>
<li>Hangzhou</li>
</settlement>
<orgName>
<li>Université de Zhejiang</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<region name="Zhejiang">
<name sortKey="Lin, Yanfei" sort="Lin, Yanfei" uniqKey="Lin Y" first="Yanfei" last="Lin">Yanfei Lin</name>
</region>
<name sortKey="Qi, Jianhua" sort="Qi, Jianhua" uniqKey="Qi J" first="Jianhua" last="Qi">Jianhua Qi</name>
<name sortKey="Sun, Yujuan" sort="Sun, Yujuan" uniqKey="Sun Y" first="Yujuan" last="Sun">Yujuan Sun</name>
<name sortKey="Weng, Yufang" sort="Weng, Yufang" uniqKey="Weng Y" first="Yufang" last="Weng">Yufang Weng</name>
<name sortKey="Xiang, Lan" sort="Xiang, Lan" uniqKey="Xiang L" first="Lan" last="Xiang">Lan Xiang</name>
</country>
<country name="Japon">
<noRegion>
<name sortKey="Matsuura, Akira" sort="Matsuura, Akira" uniqKey="Matsuura A" first="Akira" last="Matsuura">Akira Matsuura</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A49 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A49 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27429709
   |texte=   Parishin from Gastrodia elata Extends the Lifespan of Yeast via Regulation of Sir2/Uth1/TOR Signaling Pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27429709" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020